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Introduction. Let a mass point m be bound to the origin by an isotropic
harmonic force:

Lagrangian = 1
2m(ẋ2

1 + ẋ2
2)− 1

2mω2(x2
1 + x2

2)

As is well known, such an particle will trace/retrace an elliptical path. The
specific figure of the ellipse (size, eccentricity, orientation, helicity) depends
upon launch data, but all such ellipses are “concentric” in the sense that they
have coincident centers. Similar remarks pertain to the EEE -vector in an onrushing
monochromatic lightbeam. An elegant train of thought, initiated by Stokes and
brought to perfection by Poincaré (who were concerned with the phenomenon
of optical polarization), leads to the realization that the population of such
concentric ellipses (of given/fixed “size”) can be identified with the points on
the surface of a certain abstract sphere.1 One is therefore not surprised to learn
that, while O(2) is an overt symmetry of the isotropic oscillator, O(3) is present
as a “hidden symmetry.”

The situation is somewhat clarified when one passes to the Hamiltonian
formalism

H = 1
2m (p2

1 + p2
2) + 1

2mω2(x2
1 + x2

2) (1)

where it emerges readily that

A1 ≡ 1
m p1p2 + mω2x1x2 (2.1)

A2 ≡ ω(x1p2 − x2p1) (2.2)
A3 ≡ 1

2m (p2
1 − p2

2) + 1
2mω2(x2

1 − x2
2) (2.3)

are constants of the motion[
H,A1

]
=

[
H,A2

]
=

[
H,A3

]
= 0

1 These developments are reviewed fairly exhaustively in “Ellipsometry”
().
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and that [
A1, A2

]
= 2ωA3[

A2, A3

]
= 2ωA1[

A3, A1

]
= 2ωA2

which is to say: LLL ≡ 1
2ωAAA possesses Poisson bracket properties that mimic

those of angular momentum.2

The line of argument just sketched extends straightforwardly to quantum
mechanics, and shows O(3) to be a hidden symmetry also of the quantum
isotropic oscillator . . . though in the latter context the notion of “concentric
elliptical orbits” has dropped away (or at any rate retreated into the shadows).

In §5 of “Classical/quantum theory of 2-dimensional hydrogen” (February
) I note and exploit an extremely close connection between the isotropic
oscillator and the 2-dimensional Kepler problem. The work of a thesis student,
whose attempt“to expose the classical orbits that hide in the quantum shadows”
provides one of my principal lines of motivation, has revived my interest in that
connection, which will figure in these pages. But I have also a second line of
motivation:

In work already cited2 I establish that

It is futile to search for evidence of hidden symmetry written
into the design of the quantum mechanical Green’s function; it
is in precisely that sense that such symmetry is “hidden.”

Hidden symmetry lives (classically) not in configuration space, but in phase
space. I speculated that it would come more naturally into view if one elected
to work within the Wigner/Weyl/Moyal “phase space formulation” of quantum
mechanics.3 My primary intent here is to explore the merit of that idea.

Review of the essentials of the phase space formalism. Weyl proposed a simple
Fourier-analytic rule

A(x, p) =
∫∫

a(α, β) e
i
�
(αp+βx) dαdβ∣∣∣∣Weyl (3)�

A =
∫∫

a(α, β) e
i
�
(αppp+β xxx ) dαdβ

for associating classical observables (real-valued functions defined on phase
space) with their quantum counterparts (self-adjoint operators linear that act

2 I have borrowed here from (27/28) in “Jacobi’s theta transformation and
Mehler’s formula: their interrelation, and their role in the quantum theory of
angular momentum” (November ).

3 The subject is reviewed in Chapter 2 (Weyl Transform and the Phase Space
Formalism) of advanced quantum topics ().
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on the space of states). The “Weyl correspondence” is recommended by its
many attractive properties . . . especially by this one:

trAB = 1
h

∫∫
A(x, p)B(x, p) dxdp (4)

The expected value A -measurements performed on a system in state |ψ) is
standardly described

〈A〉 = (ψ|A |ψ) = trAρρρ

ρρρ ≡ |ψ)(ψ| is the “density operator”

which by (4) means that we can write

〈A〉 =
∫∫

A(x, p)Pψ(x, p) dxdp (5)

with
hPψ(x, p)←−−−−−−−−→

Weyl
ρρρ (6)

In the case A 	→ I we then have∫∫
Pψ(x, p) dxdp = 1 (7)

Equations (5) and (7) resemble equations that arise in classical statistical
mechanics. But computation leads to the “Wigner distribution function ”

Pψ(x, p) = 1
h

∫
ψ∗(x− 1

2α) e−
i
�
pα ψ(x + 1

2α) dα

= 2
h

∫
ψ∗(x + ξ) e2 i

�
pξ ψ(x− ξ) dξ (8)

which can be shown to be distribution-like in all respects but one: it may assume
negative values (so is sometimes called a “quasi-distribution”), and in this fact
resides much—but by no means all!—that is most characteristically “strange”
about quantum mechanics.4

Launch |ψ) into dynamical motion: |ψ)0 −→ |ψ)t = U(t)|ψ)0. We have
interest in the induced motion Pψ(x, p ; 0) −→ Pψ(x, p ; t). Working from

ψ(x, t) =
∫

G(x, t ;x′, 0)ψ(x′, 0) dx′

we obtain

Pψ(x, p ; t)

= 2
h

∫∫∫
G∗(x + ξ, t;x′, 0) e2 i

�
pξ G(x− ξ, t;x′′, 0)ψ∗(x′, 0)ψ(x′′, 0) dξdx′dx′′

4 In the “classical limit” (whatever that means) one expects to be able to
demonstrate that “regions of negativity” evaporate—spontaneously.
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which we bring to the form

Pψ(x, p ; t) =
∫∫

K(x, p, t; y, q, 0)Pψ(y, q ; 0) dydq (9)

by the following manipulations: write x′ = y + ζ and x′′ = y − ζ and, noting
that dx′dx′′ = 2dydζ, obtain

Pψ(x, p ; t)

= 2
h

∫∫∫
G∗(x + ξ, t; y + ζ, 0) e2 i

�
pξ G(x− ξ, t; y − ζ, 0)

· 2ψ∗(y + ζ, 0)ψ(y − ζ, 0) dξdydζ

= 2
h

∫∫∫∫
G∗(x + ξ, t; y + ζ, 0) e2 i

�
pξ G(x− ξ, t; y − ζ, 0)δ(ζ − ζ)

· 2ψ∗(y + ζ, 0)ψ(y − ζ, 0) dξdydζdζ

Use

δ(ζ − ζ) = 2
h

∫
e2 i

�
q(ζ−ζ)dq

to obtain

Pψ(x, p ; t)

= 2
h

∫∫∫∫
G∗(x + ξ, t; y + ζ, 0) e2 i

�
(pξ−qζ) G(x− ξ, t; y − ζ, 0)

· 2
{

2
h

∫
ψ∗(y + ζ, 0) e2 i

�
qζ ψ(y − ζ, 0) dζ

}
dξdζ · dydq

The implication is that

K(x, p, t; y, q, 0)

= 4
h

∫∫
G∗(x + ξ, t; y + ξ, 0) e2 i

�
(pξ−q ξ) G(x− ξ, t; y − ξ, 0) dξdξ (10)

which as t ↓ 0 becomes

K(x, p, 0; y, q, 0)

= 4
h

∫∫
δ(x + ξ − y − ξ) e2 i

�
(pξ−q ξ) δ(x− ξ − y + ξ) dξdξ

= e−2 i
�
q(x−y)2δ(2[x− y]) · 2

h

∫
e2 i

�
(p−q)ξ dξ

= δ(x− y)δ(p− q) (11)

This result inspires confidence in the accuracy of (10).
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The phase space analog of the Schrödinger equation arises as the Weyl
transform of i�∂tρρρ =

[
H , ρρρ

]
and is a fairly complicated affair:

∂
∂tP (x, p; t) = 2

�
sin

{
�

2

[(
∂
∂x

)
H

(
∂
∂p

)
P
−

(
∂
∂x

)
P

(
∂
∂p

)
H

]}
H(x, p)P (x, p; t) (12.1)

=
{
HxPp −HpPx

}
− 1

3!

(
�

2

)2{
HxxxPppp−3HxxpPppx+3HxppPpxx−HpppPxxx

}
+ · · ·

= [H,P ] + terms of order �
2 (12.2)

↑—Poisson bracket

=
∫∫
K(x, p, t; y, q, 0)Pψ(y, q ; t) dydq (12.3)

K(x, p, t; y, q, 0) ≡ ∂
∂tK (x, p, t; y, q, 0)

Major simplifications do, however, arise in cases where H(x, p) is too simple to
support high-order differentiation. We turn now to just such an instance.

Simple harmonic oscillator.5 The normalized oscillator eigenfunctions can be
described

ψn(x) =
(

2mω
h

)1
4 1√

2nn!
e−

1
2 (mω/�)x2

Hn

(√
mω

�
x
)

=
(

2mω
h

)1
4 1√

2nn!
e−

1
2x

2
Hn(x) (13)

where x ≡
√

mω
�

x is a “dimensionless length” variable, and where

Hn(y) ≡ e+y2(− d
dy

)n
e−y2

are Hermite polynomials:

H0(y) = 1
H1(y) = 2y
H2(y) = 4y2 − 2
H3(y) = 8y3 − 12y
H4(y) = 16y4 − 48y2 + 12

...

5 For all missing details see pages 6–9 in an essay previously cited.2 My
notational conventions there and here are those of Chapter 24 in Spanier &
Oldham’s Atlas of Functions. Closely related material can be found on pages
11 and 19–22 of the class notes already mentioned,3 but beware: there I adopt
the other (monic) definition of the Hermite polynomials.
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From (8) we now obtain

Pn(x, p) = 2
h

∫ (
2mω
h

)1
4 1√

2nn!
e−

1
2 (x+ξ)2Hn(x + ξ) e2ixξ

·
(

2mω
h

)1
4 1√

2nn!
e−

1
2 (x−ξ)2Hn(x− ξ) ·

√
�

mωdξ

= 2
h · 1

2nn!
√
π

∫
e−

1
2 (x+ξ)2− 1

2 (x−ξ)2+2ipξHn(x + ξ)Hn(x− ξ)dξ

where ξ ≡
√

mω
�

ξ is again a “dimensionless length” and p ≡
√

1
�mω p is a

“dimensionless momentum;” We will have immediate need also of the
“dimensionless energy” E ≡ 2(p2+x2). To achieve P (x, p)dxdp = P (x, p)dxdp
we write

Pn(x, p) = �Pn(x, p)

= 1
π

∫
ψn(x + ξ)e2ipξψn(x− ξ)dξ (14.1)

where the “dimensionless eigenfunctions”

ψn(x) ≡ 1√
2nn!

√
π
e−

1
2x

2
Hn(x) (14.2)

are orthonormal in the sense that
∫
ψm(x)ψn(x)dx = δmn. These dimensionless

variants of (8) and (13) are computationally much more convenient. We note
in passing (in preparation for work to come) that from 1

π

∫
e2ipξ dp = δ(ξ) it

follows that if we write

Pmn(x, p) ≡ 1
π

∫
ψm(x + ξ)e2ipξψn(x− ξ)dξ (15.1)

then ∫
Pmn(x, p)dp = ψm(x)ψn(x) (15.2)∫∫

Pmn(x, p)dpdx = δmn (15.3)

With the assistance of Mathematica we now compute

P 0(x, p) = 1
π e

− 1
2E

P 1(x, p) = 1
π e

− 1
2E(E− 1)

P 2(x, p) = 1
π e

− 1
2E( 1

2E2 − 2E + 1)

P 3(x, p) = 1
π e

− 1
2E( 1

6E3 − 3
2E2 + 3E− 1)

P 4(x, p) = 1
π e

− 1
2E( 1

24E4 − 2
3E3 + 3E2 − 4E + 1)

...
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without difficulty, but to develop the general formula we need more firepower.
Mehler’s formula, pressed into service as a generating function,6 comes to our
rescue: into

∞∑
n=0

τnPn(x, p)

=
∫

e−
1
2 (x+ξ)2− 1

2 (x−ξ)2+2ipξ

{
1√
π

∞∑
n=0

τn

2nn!Hn(x + ξ)Hn(x− ξ)
}
dξ

we introduce Mehler’s formula
∞∑
n=0

τn

2nn!Hn(x)Hn(x) =
1√

1− τ2
exp

{
2xyτ − (x2 + y2)τ2

1− τ2

}
(16)

and ask Mathematica to perform the integral: we get

= 1
π · 1

1+τ exp
{
τ−1
τ+1 (p2 + x2)

}
= 1

π · e−(p2+x2) 1
1+τ exp

{
2τ
τ+1 (p2 + x2)

}
= 1

π · e−
1
2E · 1

1+τ exp
{

τ
τ+1E

}
But

1
1−τ exp

{
− τ

1−τ y
}

=
∞∑
n=0

τnLn(y)

serves7 to generate the Laguerre polynomials

L0(y) = +1
L1(y) = −(y − 1)
L2(y) = +(1

2y
2 − 2y + 1)

L3(y) = −( 1
6y

3 − 3
2y

2 + 3y − 1)

L4(y) = +( 1
24y

4 − 2
3y

3 + 3y2 − 4y + 1)
...

So we have
Pn(x, p) = 1

π (−)ne−
1
2ELn(E) (17)

It was, by the way, to achieve notational simplicity at this point that E was
defined to be four times bigger than might have seemed natural:

E ≡ 4 · 1
�ω

{
1

2mp2 + 1
2mω2x2

}
6 See (1.1) in the essay2 already twice cited. We are reminded in a footnote

on page 11 that it was, in fact, as a generating function that Watson preferred
to regard Mehler’s formula.

7 See, for example, Chapter 23 in Spanier & Oldham.
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The “time-independent phase space Schrödinger equation” can be made the
basis of an alternative derivation of (17).8

Mehler’s formula is more commonly used not as a generating function, but
to construct a description of the oscillator Green’s function

G(x, t; y, 0) =
√

mω
ih sinωt exp

{
i
�

mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]}
(18)

Returning with this information to (10), we observe that

G∗(x + ξ, t; y + ξ, 0) e2 i
�
(pξ−q ξ) G(x− ξ, t; y − ξ, 0)

= mω
h sinωt exp

{
2 i

�

[
mω

sinωt

{
(x ξ + y ξ)− (x ξ + y ξ) cosωt

}
+ (p ξ − q ξ)

]}
and obtain

K(x, p, t; y, q, 0) = 4mω
h2 sinωt

∫
exp

{
2 i

�

[
mω

sinωt

(
y − x cosωt

)
+ p

]
ξ
}
dξ

·
∫

exp
{

2 i
�

[
mω

sinωt

(
x− y cosωt

)
− q

]
ξ
}
dξ

= 4mω
h2 sinωt

(
h
2

)2
δ
(

mω
sinωt [y − x cosωt] + p

)
δ
(

mω
sinωt [x− y cosωt]− q

)
= δ

(
p + mω

sinωt [y − x cosωt]
)
δ
(
x− y cosωt− 1

mω q sinωt
)

= δ
(
x− y cosωt− 1

mω q sinωt
)
δ
(
p− q cosωt + mω y sinωt

)
(19)

This is a charming result, for it describes a moving spike which precisely tracks
(on the

{
x, p

}
-plane) the classical motion

x(t) = y cosωt + 1
mω q sinωt

p(t) = q cosωt− mω y sinωt

}
(20)

of an oscillator which at t = 0 stood at the phase point
{
y, q

}
. That point

traces the iso-energetic ellipse on which

E ≡ 4 · 1
�ω

{
1

2mq2 + 1
2mω2y2

}
: constant

It becomes now elegantly clear why the Wigner distributions associated with
oscillator eigenstates do not move:

Pn(x, p ; t) =
∫∫

K(x, p, t; y, q, 0)Pn(y, q) dydq

= Pn

(
y cosωt + 1

mω q sinωt, q cosωt− mω y sinωt
)

= Pn(y, q)
{

because Pn is a function of E(y, q)
and E is a constant of the motion

8 See pages 19–20 in the class notes previously mentioned.3
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Similarly static—and for the same reason—are the Wigner distributions

P (x, p) =
∑
n

pnPn(x, p) : all pn � 0 and
∑

n pn = 1

that describe “mixtures” of eigenstates. In orthodox quantum mechanics even
energy eigenstates “move” in the sense that they “buzz harmonically”

|ψn)0 −→ |ψn)t = e−
i
�
Ent|ψn)0

Notice that such buzzing is, by the design (8) of Pψ(x, p), surpressed in the
phase space formalism.

To illustrate the quantum dynamics of a harmonic oscillator it has become
traditional to look to the back-and-forth sloshing of a Gaussian wavepacket.9

Let
ψ(x, 0) = ψ0(x− a) : displaced groundstate

= π− 1
4 e−

1
2 (x−a)2 (21.1)

=
∑
n

e−
1
4a

2 an
√

2nn!
ψn(x)

and note in passing that
∑

n

(
e−

1
4a

2 an
√

2nn!

)2 = 1. Mathematica supplies

P (x, p) = 1
π e

−(x−a)2−p2
(21.2)

Had we proceeded not from a displaced groundstate but from some more general
initial Gaussian

ψ(x, 0) = π− 1
4 1√

σ
e−

1
2 ( x−a

σ )2 (22.1)

we would have obtained

P (x, p) = 1
π e

−( x−a
σ )2−σ2p2

(22.2)

which give back (13) in the case σ = 1. In dimensionless variables the equations
(20) read

x(t) = y cosωt + q sinωt

p(t) = q cosωt− y sinωt

}
: (x + ip) = e−iωt(y + iq) (23)

which in collaboration with (11) tell us that—in these cases as in all cases—
when we “turn on dynamical time” (See Figure 1)

P (x, p ; t) rotates � rigidly (24)

9 The tradition was inaugurated by Schrödinger himself, whose short note on
the subject appeared in Die Naturwissenschaften 28, 664 (1926). For an English
translation see “The continuous transition from micro- to macro-mechanics,”
Collected Papers on Wave Mechanics (), pages 41–44.



10 Isotropic oscillator & Kepler problem in phase space formalism

-4
-2

0
2

4-4
-2
0
2
4

4
-2

0
2

-4
-2

0
2

4-4
-2
0
2
4

4
-2

0
2

-4
-2

0
2

4-4
-2
0
2
4

4
-2

0
2

-4
-2

0
2

4-4
-2
0
2
4

4
-2

0
2

-4
-2

0
2

4-4
-2
0
2
4

4
-2

0
2

-4
-2

0
2

4-4
-2
0
2
4

4
-2

0
2

Figure 1: Frames from a film (to be read like a book) illustrating
the dynamical rigid � rotation (24) of P (x, p ; t). The surface plotted
is taken from (22.2) with a = 2 and σ = 1

2 .

In the textbooks,10 as in Schrödinger’s original paper, one usually encounters
only the “projective shadow”

|ψ(x, t)|2 =
∫

P (x, p ; t)dp : marginal distribution

of this pretty result: it is, of course, the shadow that does the “sloshing,” while
P (x, p ; t) itself “twirls.” We have been brought back again to the “reference
circle” met in introductory physics courses.11 It is clear from the figure that the
marginal distribution will slosh rigidly only in the case σ = 1 (displaced ground
state) when the Gaussian mountain has circular cross-section; in other cases it
progresses through phases thin/fat/thin/fat each cycle (animation makes the

10 See, for example, Schiff, Quantum Mechanics (3rd edition ), p.74.
11 See Halliday, Resnik & Walker, Fundamentals of Physics (5th edition ),
§16-7.
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point vivid). In the case shown, Mathematica informs us that

|ψ(x, t)|2 =
√

8/π
1√

17− 15 cos 2ωt
exp

{
− 4(x− 2 cosωt)2

cos2 ωt + 16 sin2 ωt

}
and that the time-averaged marginal distribution, though an object of physical
interest, is difficult to compute (except numerically).

The preceding discussion is susceptible to this criticism: it treats a situation
so specialized as to mask a fact which the phase space formalism serves to make
plainly evident:

Quantum motion is an interference effect

The displaced ground state was seen at (21.1) to present a very particular
superposition of all eigenstates; to expose the simple essence of the point at
issue, let us look instead to an arbitrary superposition of only two eigenstates.
Taking those (orthogonal) energy eigenstates to be |m) and |n), form

|ψ) ≡ cosα · |m) + sinα · |n)

where α is a “mixing angle,” introduced to insure that

(ψ|ψ) = cos2 α + sin2 α = 1 : all α

What—in the case of an oscillator—can we say of the Pψ associated with such
a superposition? Working from (8) we readily obtain

Pψ(x, p) = cos2 α ·Pm(x, p) + sin2 α ·Pn(x, p) (25)

+ 2 cosα sinα ·
∫

ψm(x + ξ) cos
{
2pξ

}
ψn(x− ξ) dξ︸ ︷︷ ︸

interference term, the only term that moves

Note in this connection that the motion of the interference term does not place
the normalization of Pm(x, p) at risk, since by (15.3)∫∫

Pm(x, p)dxdp = cos2 α · 1 + sin2 α · 1 + 2 cosα sinα · 0 = 1

One could probably use generating function techniques to work out a general
description of

{
interference term

}
mn

=
{

interference term
}
nm

, but for the moment I
am content to look at a single illustrate case: set m = 2, n = 3 and obtain

Pψ(x, p) = 1
π e

− 1
2E

{
cos2 α · ( 1

2E2 − 2E + 1) + sin2 α · ( 1
6E3 − 3

2E2 + 3E− 1)
}

+ 2 cosα sinα · 1
π e

− 1
2E

{√
8
3 x ( 1

2E2 − 3E + 3)
}

(26)
↑
—symmetry-breaking factor

which is illustrated in Figure 2. Projection yields a marginal distribution∫
P (x, p ; t)dp = | cosα · ψ2(x) + sinα · ψ3(x)e−iωt |2

which has evidently acquired a complicated undulatory motion.
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Figure 2: At top is the rotationally symmetric (therefore static)
component of the Pψ(x, p) of (26); in the middle is the “interference
term” which, because of its lateral asymmetry, does sense the �
circulation of phase points; at bottom is their superposition. Equal
weighting has here been assumed: cosα = sinα = 1/

√
2.
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Completing an analogy. In view of the formal similarity of

ψ(x, t) =
∫

G(x, t ; y, 0)ψ(y, 0) dy

and
Pψ(x, p ; t) =

∫∫
K(x, p, t; y, q, 0)Pψ(y, q ; 0) dydq

—which in their different ways say the same thing—it might seem reasonable
to ask for a function S(x, p, t; y, q, 0) that stands to K(x, p, t; y, q, 0) more or less
as the classical action

S(x, t ; y, 0) = mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]
was seen at (18) to stand to

G(x, t; y, 0) =
√

i
h

∂2S
∂x∂y e

i
�
S(x,t ;y,0)

This expectation is strengthened by the description at (10) of a very close
interrelationship between K and G, but somewhat dimmed by the observation
at (19) that K has a very singular design:

K(x, p, t; y, q, 0) = δ
(
x− y cosωt− 1

mωq sinωt
)
δ
(
p− q cosωt + mω y sinωt

)
= 1

�
δ
(
x− y cosωt− q sinωt

)
δ
(
p− q cosωt + y sinωt

)
≡ 1

�
K(x, p, t; y, q, 0) (27)

But in Gaussian representation the δ-function reads

δ(x− a) = lim
ε↓0

1√
πε

e−(x−a)2/ε (28)

and it becomes in this light semi-natural to write

K(x, p, t; y, q, 0) = lim
ε↓0

1
πε e

−S/ε (29)

with

S(x, p, t; y, q, 0) ≡
(
x− y cosωt− q sinωt

)2 +
(
p− q cosωt + y sinωt

)2

= 1
�
· 2
ω

{
1

2m

(
p− q cosωt + mωq sinωt

)2

+ 1
2mω2

(
x− y cosωt− 1

mωq sinωt
)2

}
≡ 1

�
· S(x, p, t ; y, q, 0) (30)

In rough mimicry of Hamilton’s principle we require

S = extremum (31)

(the extremum is here necessarily a minimum) and recover (23):
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x(t) = y cosωt + q sinωt

p(t) = q cosωt− y sinωt

Richard Crandall, in conversation many years ago, has reported to me
that Richard Feynman (of whom Crandall was then a student) once remarked
(semi-facetiously?) that any physical statement of the form

A1 = B1 and A2 = B2 and . . . : A’s and B’s real

can be cast as a “variational principle:” one has only to write

(A1 −B1)2 + (A2 −B2)2 + · · · = minimum

The variational principle (31) is a swindle in precisely that sense: one must
“know the answer” before one can even write it down, and the writing is then
almost pointless. Almost, but not quite . . . for the introduction of the classical
“answer” into S does lead via (29) back to the quantum physics of the oscillator.
I discuss this point more thoroughly in a moment.

A question natural to ask—but which I will not at this point digress to
explore—is this: Is there a sense in which S(x, p, t ; y, q, 0) enters as a “natural
object” into the classical mechanics of the oscillator?

Recovery of Green’s function from its phase space counterpart. Wigner/Weyl
gave us

ψ(x) −−−−−−−−−−−−−−−−→
Wigner/Weyl

Pψ(x, p)

but the reverse procedure

ψ(x)←−−−−−−−−−−−−−−−−
Beck

Pψ(x, p)

was, so far as I am aware, first described in unpublished work by Mark Beck.
Beck’s construction12 yields

ψ(x) = [ψ∗(a)]–1 ·
∫

Pψ(x+a
2 , p)e

i
�
p(x−a)dp

↓

= [ψ∗(0)]–1 ·
∫

Pψ(x2 , p)e
i
�
pxdp in the special case a = 0

on the assumption that ∫
P (a, p)dp = ψ∗(a)ψ(a) �= 0

12 See page 13 in the class notes previously cited.3
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Look back again, in this light, to (10):

K(x, p, t; y, q, 0)

= 4
h

∫∫
G∗(x + ξ, t; y + ξ, 0) e2 i

�
(pξ−q ξ) G(x− ξ, t; y − ξ, 0) dξdξ

By Fourier transformation we have∫∫
K(x, p, t; y, q, 0) e−2 i

�
(pζ−q ζ) dpdq

= h

∫∫
G∗(x + ξ, t; y + ξ, 0) δ(ξ − ζ)δ(ξ − ζ)G(x− ξ, t; y − ξ, 0) dξdξ

= hG∗(x + ζ, t; y + ζ, 0)G(x− ζ, t; y − ζ, 0)

Select points a and b at which G∗(a, t ; b, 0)G(a, t ; b, 0) �= 0. Set ζ = a− x and
ζ = b− y to obtain

hG∗(a, t; b, 0)G(2x− a, t; 2y − b, 0)

=
∫∫

K(x, p, t; y, q, 0) e−2 i
�
[p (a−x)−q(b−y)] dpdq

which by notational adjustment 2x− a 	→ x, 2y − b 	→ y becomes

G(x, t ; y, 0) = [hG∗(a, t; b, 0)]–1 ·
∫∫

K
(
x+a

2 , p, t; y+b
2 , q, 0

)
e

i
�
[p (x−a)−q(y−b)] dpdq

↓ (32.1)

= [hG∗(0, t; 0, 0)]–1 ·
∫∫

K
(
x
2 , p, t;

y
2 , q, 0

)
e

i
�
[px−qy ] dpdq

The prefactors are determined to within phase factors by the statements

|hG(a, t ; b, 0)|2 =
∫∫

K
(
a, p, t; b, q, 0

)
dpdq

↓ (32.2)

|hG(0, t ; 0, 0)|2 =
∫∫

K
(
0, p, t; 0, q, 0

)
dpdq in the special case a = b = 0

and the phase factors can be extracted from the requirement that

lim
t↓0

G(x, t ; y, 0) = δ(x− y) (32.3)

where the prefactors are, in effect, normalization constants, fixed to within an
arbitrary phase factor.

If the K(x, p, t; y, q, 0) appropriate to a quantum system S were available
as a point of departure, then one could in principle use (32) to construct
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G(x, t ; y, 0), and if additionally one could bring the Green’s function to the
form

G(x, t ; y, 0) =
∑
n

e−
i
�
Entψn(x)ψ∗

n(y)

then one could simply read off the solutions of the associated time-independent
Schrödinger equation. In favorable cases such a program can actually be carried
to completion . . . as I now demonstrate:

Uncommon approach to the quantization of an oscillator. Quantization of the
oscillator—first accomplished by Planck almost exactly a century ago (I write on
 December ; Planck’s radiation formula and its derivation were announced
on  December )—marks the birthplace of quantum mechanics. The
oscillator, for reasons that can be attributed mainly to the quadraticity of its
Hamiltonian, is an exceptionally accommodating system, and its quantization
can be/has been approached in a great variety of ways. To that long list I add
now another.

We were led at (27) to a quantum mechanical statement

Kosc(x, p, t; y, q, 0) (33)
= δ

(
x− y cosωt− 1

mωq sinωt
)
δ
(
p− q cosωt + mω y sinωt

)
that—remarkably—contains no �, and that can be read as a description of the
classical motion of the harmonically driven phase point which at time t = 0
resided at

{
y, q

}
. Let us suppose that (33)—though a statement which we

obtained as a result of long quantum mechanical analysis (involving steps which
I propose now, in effect, to reverse)—has been given. Returning with (33) to
(32.1) we have

hGosc(x, t ; y, 0)G∗
osc(0, t ; 0, 0)

=
∫∫

δ
(
x
2 −

y
2 cosωt− 1

mω q sinωt
)

· δ
(
p− q cosωt + mω y

2 sinωt
)
e

i
�
[px−qy ] dpdq

=
∫

mω
sinωtδ

(
q − mω(x−y cosωt)

2 sinωt

)
exp

{
i
�

[
x(q cosωt−mω y

2 sinωt)− qy
]}

dq

= mω
sinωt exp

{
i
�

mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]}
Therefore

h|Gosc(0, t ; 0, 0)|2 = mω
sinωt =⇒ [G∗

osc(0, t ; 0, 0)]–1 =
√

h sinωt
mω · eiα

and we have

Gosc(x, t ; y, 0) = eiα
√

mω
h sinωt exp

{
i
�

mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]}
⇓

= eiα
√

i 1
π

m
2i�t exp

{
− m

2i�t (x− y)2
}

as t ↓ 0
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which in view of (28) requires that to achieve (32.3) we must set eiα = 1/
√
i.

We then have

Gosc(x, t ; y, 0) =
√

mω
ih sinωt exp

{
i
�

mω
2 sinωt

[
(x2 + y2) cosωt− 2xy

]}
which exactly reproduces (18). So we have, in this instance, managed to carry
out step one

Gosc(x, t ; y, 0)←−−−−−−−−−−−−−−−−
extended Beck

Kosc(x, p, t; y, q, 0)

of our 2-step program. The labor of step two was, as it happens, performed
by Ferdinand Mehler in (), who established13 that the expression on the
right side of (18)

√
etc. exp

{
i
�

etc.
}

=
∑
n

e−iω(n+ 1
2 )tψn(x)ψn(y)

This equation provides an explicit summary of the information that enters into
the solution of

Hoscψn(x) = Enψn(x)

It would be of great interest to know what the “phase space propagator”
looks like in some other exactly soluable cases, and in those cases to test the
utility of the program (33).

2-dimensional isotropic oscillator. In Cartesian coordinates the system presents
itself

L = 1
2m(ẋ2

1 − ω2x2
1) + 1

2m(ẋ2
2 − ω2x2

2) (34.1)

as such a simple generalization of its 1-dimensional counterpart

L = 1
2m(ẋ2

1 − ω2x2
1)

that it might seem a little difficult to suppose that it is of any special interest,
or displays any novel features. The first hint that it does so springs from the
realization that the orbits have suddenly become relatively complicated figures
—ellipses (simple Lissajous figures) inscribed on the coordinate plane. And
that it has become possible to contemplate “symmetry adapted” coordinates:
write

x1 = r cosϕ = aeρ cosϕ
x2 = r sinϕ = aeρ sinϕ

}
: a an arbitrary “length”

and obtain

L = 1
2m

{
ṙ2 + r2ϕ̇2 − ω2r2

}
(34.2)

= 1
2ma2e2ρ

{
ρ̇2 + ϕ̇2 − ω2

}
(34.3)

13 See again equation (9) in “Jacobi’s theta transformation and Mehler’s
formula: their interrelation, and their role in the quantum theory of angular
momentum” (November ).
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Let us agree to work initially in Cartesian coordinates, one grounds that
it is the phase space formalism with which we desire to establish contact, and
that formalism, as standardly presented, works only in Cartesian coordinates.
From the symmetrically bipartite design of the Hamiltonian

H = 1
2m p2

1 + 1
2mω2 x2

1 + 1
2m p2

2 + 1
2mω2 x2

2 (35)

it follows that the resulting quantum mechanics is in many respects simply a
duplex version of the quantum mechanics of a simple oscillator. The Schrödinger
equation separates: the eigenfunctions are products

ψn1n2
(x1, x2) = ψn1

(x1) · ψn2
(x2) (36.1)

of the eigenfunctions of a simple oscillator: the associated eigenvalues

En1n2
= (n1 + n2 + 1)�ω : n1, n2 = 0, 1, 2, . . .
↓ (36.2)

En = (n + 1)�ω with n ≡ n1 + n2

are (n+ 1)-fold degenerate, being shared by ψ0,n , ψ1,n−1 , ψ2,n−2 , . . . , ψn,0 .
One has

ψ(x1, x2, t) =
∫∫

G(x1, x2, t ; y1, y2, 0)ψ(y1, y2, 0)dy1dy2

with
G(x1, x2, t ; y1, y2, 0) = Gosc(x1, t ; y1, 0) ·Gosc(x2, t ; y2, 0) (37)

In two dimensions the Wigner transform of ψ(x1, x2) is—compare (8)—
defined

Pψ(x1, x2, p1, p2)

=
(

2
h

)2
∫∫

ψ∗(x1 + ξ1, x2 + ξ2)e
2 i

�
(p1ξ1+p2ξ2)ψ(x1 − ξ1, x2 − ξ2)dξ1dξ2

which will be abbreviated

Pψ(xxx, ppp) =
(

2
h

)2
∫∫

ψ∗(xxx + ξξξ ) e2 i
�
ppp ···ξξξ ψ(xxx− ξξξ ) dξ1dξ2 (38)

We are powerless to plot such functions, but do have available to us such devices
as the display of 2-dimensional sections—such, for example, as Pψ(x1, x2, 0, 0)—
or of associated marginal distributions:

|ψ(x1, x2)|2 =
∫∫

Pψ(xxx, ppp)dp1dp2 : typical marginal distribution

The Wigner transforms of the eigenfunctions have product structure

Pn1n2
(x1, x2, p1, p2) = Pn1

(x1, p1) · Pn2
(x2, p2) (39)
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where the factors were found at (17) to depend upon their respective arguments
through

E1 ≡ 2(p2
1 + x2

1)

E2 ≡ 2(p2
2 + x2

2)
(40)

Product structure attaches also to the “phase space propagator,” where by
enlargement upon (19) we have

K(xxx, ppp, t ;yyy, qqq, 0) (40)
= δ

(
x1 − y1 cosωt− 1

mωq1 sinωt
)
δ
(
p1 − q1 cosωt + mω y1 sinωt

)
· δ

(
x2 − y2 cosωt− 1

mωq2 sinωt
)
δ
(
p2 − q2 cosωt + mω y2 sinωt

)
while its hypothetical logarithmic companion grows additively: in dimensionless
variables we expect to have (compare (30))

S(xxx, ppp, t;yyy, qqq, 0) (41)

=
(
x1 − y1 cosωt− q1 sinωt

)2 +
(
p1 − q1 cosωt + y1 sinωt

)2

+
(
x2 − y2 cosωt− q2 sinωt

)2 +
(
p2 − q2 cosωt + y2 sinωt

)2

We are in position now to consider the first of the issues that motivated
this discussion:

Hidden symmetry revealed. Equations (40) and (41) allude—in their distinct
ways, and for distinct “reasons” (surprisingly in the first instance, since K is
a quantum mechanical object)—to “dynamical phase flow” in 4-dimensional
phase space Γ4:

t-parameterized action H[t] of H :




y1 	−→ x1(t) = y1 cosωt + q1 sinωt

q1 	−→ p1(t) = q1 cosωt− y1 sinωt

y2 	−→ x2(t) = y2 cosωt + q2 sinωt

q2 	−→ p2(t) = q2 cosωt− y2 sinωt

They allude, that is to say, to the t-parameterized canonical transformation
generated by the Hamiltonian. From the overt rotational symmetry of the
Lagrangian (34) one is led via Noether’s theorem to the identification of

L3 ≡ x1p2 − x2p1 (42)

as a conserved observable:14

[H,L3] = 0 (43)

14 To facilitate work with dimensionless variables I define

[A,B] ≡ ∂A

∂x1

∂B

∂p1
+

∂A

∂x2

∂B

∂p2
− ∂B

∂x1

∂A

∂p1
− ∂B

∂x2

∂A

∂p2
= � · [A,B]

Also H ≡ 1
2

{
p2
1 + x2

1 + p2
2 + x2

2

}
= 1

�ωH is the “dimensionless Hamiltonian” for
purposes of this discussion.
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Look upon L3(xxx, ppp) as the generator of a u-parameterized family of canonical
transformations: specifically

u-parameterized action L3[u] of L3 :




x1 	−→ x̂1 = x1 cosu− x2 sinu

p1 	−→ p̂1 = p1 cosu− p2 sinu

x2 	−→ x̂2 = x2 cosu + x1 sinu

p2 	−→ p̂2 = p2 cosu + p1 sinu

which was obtained by integration of

d
dux1 = −[L3, x1] = +∂L3/∂p1 = −x2

d
du p1 = −[L3, p1] = −∂L3/∂x1 = −p2

d
dux2 = −[L3, x2] = +∂L3/∂p2 = +x1

d
du p2 = −[L3, p2] = −∂L3/∂x2 = +p1

The statement (43) that L3 is a constant of the motion can be phrases this way:
L3 maps dynamical trajectories to dynamical trajectories. Which is to say:
the following diagram is “commutative” in the sense that the red sequence of

{
yyy, qqq

}
−−−−−−−−−−−−→

H[t]

{
xxx, ppp

}
| |∣∣∣L3[u]

∣∣∣L3[u] (44)
↓ ↓{

ŷyy, q̂qq
}
−−−−−−−−−−−−→

H[t]

{
x̂xx, p̂pp

}
operations has the same effect as the black sequence. The claim is established by
computation of a sort which I am content generally to entrust to Mathematica,
but which I illustrate in a single instance:

y1
—–↓(y1 cosωt + q1 sinωt) cosu− (y2 cosωt + q2 sinωt) sinu

y1 |−→ (y1 cosu− y2 sinu) cosωt + (q1 cosu− q2 sinu) sinωt

the expressions on the right are clearly equal

More to the immediate point, we look with the assistance of Mathematica
to the “classical phase action” S(xxx, ppp, t;yyy, qqq, 0) introduced at (41) and discover
that

S(x̂xx, p̂pp, t; ŷyy, q̂qq, 0) = S(xxx, ppp, t;yyy, qqq, 0) (45)

“Classical phase action” is invariant under the action of L3[u].

Look finally to the (quantum mechanical) phase space propagator (40),
which in dimensionless variables becomes

K(xxx, ppp, t;yyy, qqq, 0) (46)
= δ

(
x1 − y1 cosωt− q1 sinωt

)
δ
(
p1 − q1 cosωt + y1 sinωt

)
· δ

(
x2 − y2 cosωt− q2 sinωt

)
δ
(
p2 − q2 cosωt + y2 sinωt

)
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and under action of L3 gives

K(x̂xx, p̂pp, t; ŷyy, q̂qq, 0) = (47)
δ
(
[x1 cosu−x2 sinu]− [y1 cosu−y2 sinu] cosωt− [q1 cosu−q2 sinu] sinωt

)
· δ

(
[p1 cosu−p2 sinu]− [q1 cosu−q2 sinu] cosωt+[y1 cosu−y2 sinu] sinωt

)
· δ

(
[x2 cosu+x1 sinu]− [y2 cosu+y1 sinu] cosωt− [q2 cosu+q1 sinu] sinωt

)
· δ

(
[p2 cosu+p1 sinu]− [q2 cosu+q1 sinu] cosωt+[y2 cosu+y1 sinu] sinωt

)
It is to facilitate interpretation of this result that I digress to review

some properties of multivariate delta functions

Adopt the notational convention

δ(a11x1 + a12x2 − b1)δ(a21x1 + a22x2 − b2) = δ(Axxx− bbb)

which extends straightforwardly from the 2-dimensional to the N -dimensional
case. The multivariable calculus supplies∫∫

f(xxx)δ(Axxx− bbb) dx1dx2 =
∫∫

f
(
(A–1(yyy + bbb)

)
δ(yyy) |det A |–1dy1dy2

= f(A–1bbb)|det A |–1

where yyy ≡ Axxx−bbb and |det A |–1 is the Jacobian of the invertible transformation
xxx 	→ yyy. So we have

=
∫∫

f(xxx)δ(x− A
–1bbb)|det A |–1dx1dx2

of which
δ(Axxx− bbb) = |det A |–1 · δ(xxx− A

–1bbb) (48)

provides formal expression. In the 1-dimensional case we recover

δ(ax− b) = |a|–1 · δ(x− b/a)

as reported by Dirac himself.

Returning now to (47), we have

K(x̂xx, p̂pp, t; ŷyy, q̂qq, 0) = δ(RXXX− BYYY)
= |det R |–1 · δ(XXX− R

–1
BYYY)

where

XXX ≡




x1

p1

x2

p2


 , YYY ≡




y1

q1

y2

q2


 , R ≡




cosu 0 − sinu 0
0 cosu 0 − sinu

sinu 0 cosu 0
0 sinu 0 cosu
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and

B ≡




cosu cosωt cosu sinωt − sinu cosωt − sinu sinωt
− cosu sinωt cosu cosωt sinu sinωt − sinu cosωt

sinu cosωt sinu sinωt cosu cosωt cosu sinωt
− sinu sinωt sinu cosωt − cosu sinωt cosu cosωt




Mathematica supplies

R
–1

B =




cosωt sinωt 0 0
− sinωt cosωt 0 0

0 0 cosωt sinωt
0 0 − sinωt cosωt


 and det R = 1

Therefore

K(x̂xx, p̂pp, t; ŷyy, q̂qq, 0) = δ(ZZZ) with ZZZ ≡




x1 − y1 cosωt− q1 sinωt
p1 − q1 cosωt + y1 sinωt
x2 − y2 cosωt− q2 sinωt
p2 − q2 cosωt + y2 sinωt




= K(xxx, ppp, t;yyy, qqq, 0) (49)

In short: the phase space propagator is—like the “classical phase action” was
found to be at (45)—invariant under the action of L3[u].

This result is gratifying but hardly surprising, for in standard isotropic
oscillator theory rotational invariance is a property already of the ordinary
action/propagator, a symmetry known to lie unproblematically at the base of
L3-conservation.

In isotropic oscillator theory, as was remarked at the outset (see again (2)),
L3 is presented as the companion of two less familiar conservation laws

A1 ≡ p1p2 + x1x2 : non-Noetherean p -dependence (50.1)
L3 = A2 ≡ x1p2 − x2p1 : Noetherean (overt rotational symmetry) (50.2)

A3 ≡ 1
2 (p2

1 + x2
1 − p2

2 − x2
2) : non-Noetherean p -dependence (50.3)

Our former line of argument gives

u-parameterized action A1[u] of A1 :




x1 	−→ x̂1 = x1 cosu + p2 sinu

p1 	−→ p̂1 = p1 cosu− x2 sinu

x2 	−→ x̂2 = x2 cosu + p1 sinu

p2 	−→ p̂2 = p2 cosu− x1 sinu

u-parameterized action A3[u] of A3 :




x1 	−→ x̂1 = x1 cosu + p1 sinu

p1 	−→ p̂1 = p1 cosu− x1 sinu

x2 	−→ x̂2 = x2 cosu− p2 sinu

p2 	−→ p̂2 = p2 cosu + x2 sinu
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Computation shows that S(xxx, ppp, t;yyy, qqq, 0) is invariant not just under L3[u], as
was established at (45), but under the action of each of the transformations
A1[u], A2[u] and A3[u].

Turning from the classical to the quantum physics of the system, we have

K(x̂xx, p̂pp, t; ŷyy, q̂qq, 0) = δ(R1XXX− B1YYY) = |det R1 |–1 · δ(XXX− R
–1
1 B1YYY)

with

R1 ≡




cosu 0 0 sinu
0 cosu − sinu 0
0 sinu cosu 0

− sinu 0 0 cosu




B1 ≡




cosu cosωt cosu sinωt − sinu sinωt sinu cosωt
− cosu sinωt cosu cosωt − sinu cosωt − sinu sinωt
− sinu sinωt sinu cosωt cosu cosωt cosu sinωt
− sinu cosωt − sinu sinωt − cosu sinωt cosu cosωt




Computation gives results already encountered

R
–1
1 B1 = R

–1
B (see above) and det R1 = det R

Similarly

K(x̂xx, p̂pp, t; ŷyy, q̂qq, 0) = δ(R3XXX− B3YYY) = |det R3 |–1 · δ(XXX− R
–1
3 B3YYY)

with

R3 ≡




cosu sinu 0 0
− sinu cosu 0 0

0 0 cosu − sinu
0 0 sinu cosu




B3 ≡




cos(ωt + u) sin(ωt + u) 0 0
− sin(ωt + u) cos(ωt + u) 0 0

0 0 cos(ωt− u) sin(ωt− u)
0 0 − sin(ωt− u) cos(ωt− u)




and
R

–1
3 B3 = R

–1
B (see above) and det R3 = det R = 1

The wonderful implication is that the “hidden symmetries” A1[u] and A3[u] of
the isotropic oscillator are express/explicit/revealed symmetries of the phase
space propagator K(xxx, ppp, t;yyy, qqq, 0).

The R-matrices are proper rotation matrices,15 generated by

A1 ≡




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , A2 ≡




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , A3 ≡




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




15 So, for that matter, are the B -matrices.
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respectively.16 These matrices satisfy

A
2
1 = A

2
2 = A

2
3 = −I

and [
A1,A2

]
= 2A3[

A2,A3

]
= 2A1[

A3,A1

]
= 2A2

The latter equations mimic the Poisson bracket relations satisfied by the
A-observables (50):

[A1, A2] = 2A3

[A2, A3] = 2A1

[A3, A1] = 2A2

Which I have written to underscore once again the many-times-repeated fact
that, while O(2) describes the overt geometrical symmetry of the isotropic
oscillator, O(3) describes the “hidden symmetry,” which we have found to
be “overt” in classical/quantum phase space formalisms, but is eclipsed by
processes—for example

G(xxx, t ;yyy, 0)←−−−−−−−−−−−−
Beck

K(xxx, ppp, t;yyy, qqq, 0)

—which are designed to achieve pull-back to configuration space. The question
arises: Why O(3) instead of O(4), since isoenergetic surfaces

1
2 (p2

1 + x2
1 + p2

2 + x2
2) = constant

are hyperspherical in Γ4? The short answer: It is the business of constants of
motion to generate not canonical transformations that map isoenergetic surfaces
each onto itself, but to map

dynamical orbits 	−→ dynamical orbits

Dynamical orbits are specialized decorations inscribed on isoenergetic surfaces,
whence the retraction O(3)← O(4).

Classical/quantum orbits and their elliptical projections. The Wigner function
associated with the ground state of an isotropic oscillator was found at (39/17)
to be given by

P 00(xxx, ppp) = 1
π (−)0e−

1
2E1L0(E1) · 1

π (−)0e−
1
2E2L0(E2)

=
(

1
π

)2
e−(p2

1+x2
1+p2

2+x2
2)

so
P (xxx, ppp) ≡ P 00(xxx− aaa, ppp− bbb) (51)

16 For typographic reasons I have here written 1 for −1.
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describes a copy of the ground state that has been displaced in phase space.
What can we in this instance say about

ψ(xxx)←−−−−−−−−−−−−
Beck

P (xxx, ppp)

Look to the 1-dimensional case, where we have

ψ(x)ψ∗(0) =
∫
P (x2 , p)e

ipx dp

=
∫

1
π exp

{
− (x2 − a)2 − (p− b)2

}
eipx dp

= 1√
π
e−

1
2x

2+ax−a2
eibx

which by ψ(x)ψ∗(0) = 1√
π
e−a2 ⇒ ψ∗(0) = ei(arbitrary phase) · π− 1

4 e−
1
2a

2
gives

(after we abandon the phase factor)

ψ(x) = π− 1
4 e−

1
2 (x−a)2 · eibx (52.1)

We have here conducted in reverse the argument that gave (21.2), but have
gained something for our pains: at (21) we were preparing ourselves to displace
the oscillator and then simply release it; here—by a process very easy to
comprehend in phase space—we have declared our intention to launch the
oscillator with a flick (non-zero initial momentum), and recognize the eibx

to possess the otherwise semi-obscure significance of a “flick factor.” In two
dimensions we have

ψ(xxx) = π− 1
2 e−

1
2 [(x1−a1)

2+(x2−a2)
2]· ei(b1x1+b2x2) (52.2)

and the “flick” becomes vectorial.

To launch P (xxx, ppp) into motion we introduce (40)—actually its dimensionless
variant

K(xxx, ppp, t;yyy, qqq, 0)
= δ

(
x1 − y1 cosωt− q1 sinωt

)
δ
(
p1 − q1 cosωt + y1 sinωt

)
· δ

(
x2 − y2 cosωt− q2 sinωt

)
δ
(
p2 − q2 cosωt + y2 sinωt

)
= δ( XXX− RYYY)

R ≡




cosωt sin ωt 0 0
− sin ωt cosωt 0 0

0 0 cosωt sin ωt
0 0 − sin ωt cosωt




= δ(YYY− R
–1 XXX )

—into
P (xxx, ppp ; t) =

∫∫∫∫
K(xxx, ppp, t;yyy, qqq, 0)P (yyy, qqq) dy1dq1dy2dq2



26 Isotropic oscillator & Kepler problem in phase space formalism

and obtain

P (xxx, ppp ; t) = 1
π exp

{
− (x1 cosωt−p1 sinωt−a1)

2

− (p1 cosωt+x1 sinωt−b1)
2
}

(53)

···(similar factor with subscripts advanced: 1→2 )

which describes a Gaussian in rigid 4-dimensional motion. The “moving max”
—got by solving

(x1 cosωt−p1 sinωt−a1) = (etc.) = (etc.) = (etc.) = 0

—is situated at
x1 = a1 cosωt + b1 sinωt

p1 = b1 cosωt− a1 sinωt

x2 = a2 cosωt + b2 sinωt

p2 = b2 cosωt− a2 sinωt

which (by a kind of “duplex reference circle” construction) projects

x1 = a1 cosωt + b1 sinωt

x2 = a2 cosωt + b2 sinωt

}
(54.1)

onto the physical space of the oscillator. In polar notation17 the preceding
equations become

x1 = X1 cos(ωt + δ1)
x2 = X2 cos(ωt + δ2)

}
(54.2)

Equations (54) provide parametric description of an ellipse. Elimination of the
parameter18 gives

X2
2 · x2

1 − 2X1X2 cos δ · x1x2 + X2
1 · x2

2 = X2
1 X2

2 sin2δ (55)
↑
δ ≡ δ2 − δ1

17 Write, in each case,

a = X cos δ and b = X sin δ

which entail
X =

√
a2 + b2 and δ = arctan(b/a)

18 On the basis of (54.1) write(
a1 b1
a2 b2

) (
cosωt
sinωt

)
=

(
x1

x2

)
: abbreviated M

–1

(
cosωt
sinωt

)
= xxx

which gives
xxxT

M
T
Mxxx = 1
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Figure 3: Geometrical meaning of the parameters that enter into
Stokes’ definitions (56.1).

X2

χ
ψ

X1

It is to Stokes that we are indebted for the introduction of notations

S0 ≡ X2
1 + X2

2

S1 ≡ X2
1 − X2

2 = S0 cos 2χ cos 2ψ
S2 ≡ 2X1X2 cos δ = S0 cos 2χ sin 2ψ
S3 ≡ 2X1X2 sin δ = S0 sin 2χ


 (56.1)

that in conjunction with the preceding figure permit direct apprehension of the
figure of the ellipse implicitly described by (55). The “flying spot” that at (54)
traced the ellipse has at this point been expunged, but the rotational sense of
its motion does survive: its progress was � or � according as the “chirality” is
plus or minus, where

chirality ≡ sign of a1b2 − a2b1︸ ︷︷ ︸ , which is “angular momentum-like”

= X1X2 sin δ

= sign of δ (56.2)

In ordinary quantum mechanics (where one has no reason to examine
P (xxx, ppp ; t)) one finds it most natural to look—with Schrödinger himself—to the
“marginal” distribution
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|ψ(xxx, t)|2 =
∫∫

P (xxx, ppp ; t) dp1dp2

= 1√
π

exp
{
− (x1 − a1 cosωt− b1 sinωt)2

}
(57)

···(similar factor with subscripts advanced: 1→2 )

so (by-passing the preceding quartet of equations) is led directly to (54.1), and
to the elliptical remarks we extracted therefrom.

With Mathematica’s ready assistance we look to the moving expectation
values of the observables A0 ≡ 1

2 (p2
1 + x2

1 + p2
2 + x2

2) and A1, A2, A3 introduced
at (50), and find

〈A0〉 =
∫∫∫∫

A0(xxx, ppp)P (xxx, ppp ; t) dx1dp1dx2dp2

= 1
2 (a2

1 + b21 + a2
2 + b22 ) + 1

〈A1〉 = b1b2 + a1a2

〈A2〉 = a1b2 − a2 b1

〈A3〉 = 1
2 (a2

1 + b21 − a2
2 − b22 )

that in fact they do not move; all the t-dependence drops away . . . as, indeed,
it must: the observables in question are known to be constants of the motion!
Moreover, we have

〈A0〉 = 1
2 (X2

1 + X2
2 ) + 1 = 1

2S0 + 1
〈A1〉 = X1X2 cos δ = 1

2S2

〈A2〉 = X1X2 sin δ = 1
2S3

〈A3〉 = 1
2 (X2

1 − X2
2 ) = 1

2S1


 (58)

which serve (i) to associate the conserved observables A with constant features
of the orbital geometry, and (ii) to establish contact with mathematical aspects
of the profound innovations which Stokes/Poincaré brought to the theory of
optical polarization . . .down which well-travelled road are known to lie the
spinor representations of O(3) and all that good stuff.

The displaced ground state P (xxx, ppp ; t) moves, I emphasize once again, for
the same reasons that Wigner distributions in general move: because it is
assembled from superimposed energy eigenfunctions. But it is a very special
superposition, and moves in a way that is in some respects atypical. It is
“minimally dispersive” and—more to the point—P (xxx, ppp ; 0) displays O(4)
symmetry with respect to the phase point

{
aaa, bbb

}
, with the consequence that

its projections on all phase planes move “rigidly,” i.e., in such a way as to
preserve their shape. To say the same thing another way: its centered moments
of all orders n � 2 are constant. In less specialized cases one expects expressions
of (say) the form ∫∫∫∫

(x1 − 〈x1〉t)nP (xxx, ppp ; t) dx1dp1dx2dp2
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to display harmonics of the natural frequency ω. It is, however, easy to show
(is the upshot, essentially, of Ehrenfest’s theorem) that in all cases the motion
of the first moments can be described19

〈x1〉 = a1 cosωt + b1 sinωt

〈p1〉 = b1 cosωt− a1 sinωt

〈x2〉 = a2 cosωt + b2 sinωt

〈p2〉 = b2 cosωt− a2 sinωt

where the a’s and b’s refer now to the initial values of those moments. In
that limited sense, elliptical “Lissajous motion” of the sort discussed above
pertains universally to the quantum dynamics of isotropic oscillators . . . quite
as expected, since it pertains universally to the classical dynamics, and the
phase space propagator (40/46) displays no non-classical feature.

From isotropic oscillator to the 2-dimensional Kepler problem. My objective is
the 2-dimensional Kepler problem

H(px, py, x, y) = 1
2m (p2

x + p2
y)− k√

x2+y2
(59)

More specifically, I have interest in what might be called the “orbital theory of
2-dimensional hydrogen,” which I propose to study in phase space the better
to expose the origin of the “hidden symmetry” (accidental degeneracy) which
the system is known to display. To get there I intend to exploit the fact20 that
in confocal parabolic coordinates

x = 1
2 (µ2 − ν2)

y = µν

}
(60)

the Lagrangian becomes “separable in the sense of Liouville”

L = 1
2m(µ2 + ν2)(µ̇2 + ν̇2)− 2k

µ2+ν2

and supplies
pµ = m(µ2 + ν2)µ̇
pν = m(µ2 + ν2)ν̇

H(pµ, pν , µ, ν) = 1
µ2+ν2

{
1

2m (µ̇2 + ν̇2) + 2k
}

(61)

and leads to a Schrödinger equation that separates:{
− �

2

2m

(
d
dµ

)2 − Eµ2 − k1 − ε1
}
M(µ) = 0{

− �
2

2m

(
d
dν

)2 − E ν2 − k2 − ε2
}
N(ν) = 0

19 For detailed discussion of “quantum mechanics as a theory of coupled
moments” (with special reference to the phase space formalism) see pages 51–60
in advanced quantum topics (), Chapter 2.

20 See §5 in “Classical/quantum theory of 2-dimensional hydrogen” (notes
for the Reed College Physics Seminar of  February ).
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Here k1 + k2 = 2k and ε1 + ε2 = 0. These equations can be written

{
− �

2

2m

(
d
dµ

)2 + 1
2mω2µ2

}
M(µ) = (k1 + ε1)M(µ){

− �
2

2m

(
d
dν

)2 + 1
2mω2 ν2

}
N(ν) = (k2 + ε2)N(ν)


 (62)

1
2mω2 ≡ −E : positive for bound states (63)

and—remarkably—place us in position to make formal use of the relatively
simple quantum theory of isotropic oscillators. Note, however, that an element
of anharmonicity is introduced into the latter theory at (63), and that the
coordinates which enter into (62) are non-Cartesian.


